National Repository of Grey Literature 6 records found  Search took 0.00 seconds. 
Numerical solution of equations describing the dynamics of flocking
Živčáková, Andrea ; Kučera, Václav (advisor) ; Janovský, Vladimír (referee)
This work is devoted to the numerical solution of equations describing the dynamics of flocks of birds. Specifically, we pay attention to the Euler equations for compressible flow with a right-hand side correction. This model is based on the work Fornasier et al. (2010). Due to the complexity of the model, we focus only on the one-dimensional case. For the numerical solution we use a semi-implicit discontinuous Galerkin method. Discretization of the right-hand side is chosen so that we preserve the structure of the semi-implicit scheme for the Euler equations presented in the work Feistauer, Kučera (2007). The proposed numerical scheme was implemented and numerical experiments showing the robustness of the scheme were carried out. Powered by TCPDF (www.tcpdf.org)
Exact and approximate Riemann solvers for the Euler equations
Živčáková, Andrea ; Kučera, Václav (advisor) ; Felcman, Jiří (referee)
In this work we deal with the solution and implementation of the problem of solving a partial differential equation with a piecewise constant initial condition, the so-called Riemann's problem. Specifically, we study the equations of conservation laws describing inviscid adiabatic flow of an ideal gas - the Euler equations. After some investigation, we show that these equations can be transformed to a quasilinear hyperbolic partial differential equation of first order. We are especially interested in the one-dimensional Euler equations for which we want to get an analytically exact Riemann's solver. The solution is found by investigation of properties of waves, namely rarefaction waves, shock waves and contact discontinuities were treated. The output of this work is a program in C for finding the exact Riemann's solver for one-dimensional Euler equations. The program is based on a theoretical analysis summarized in the first two chapters, and is tested on standard test data. The theory is based on the books [1] and [2].
Numerical solution of equations describing the dynamics of flocking
Živčáková, Andrea ; Kučera, Václav (advisor)
This work is devoted to the numerical solution of equations describing the dynamics of flocks of birds. Specifically, we pay attention to the Euler equati- ons for compressible flow with a right-hand side correction. This model is based on the work Fornasier et al. (2010). Due to the complexity of the model, we focus only on the one-dimensional case. For the numerical solution we use a semi- implicit discontinuous Galerkin method. Discretization of the right-hand side is chosen so that we preserve the structure of the semi-implicit scheme for the Euler equations presented in the work Feistauer, Kučera (2007). The proposed numeri- cal scheme was implemented and numerical experiments showing the robustness of the scheme were carried out. 1
Numerical solution of equations describing the dynamics of flocking
Živčáková, Andrea ; Kučera, Václav (advisor)
This work is devoted to the numerical solution of equations describing the dynamics of flocks of birds. Specifically, we pay attention to the Euler equati- ons for compressible flow with a right-hand side correction. This model is based on the work Fornasier et al. (2010). Due to the complexity of the model, we focus only on the one-dimensional case. For the numerical solution we use a semi- implicit discontinuous Galerkin method. Discretization of the right-hand side is chosen so that we preserve the structure of the semi-implicit scheme for the Euler equations presented in the work Feistauer, Kučera (2007). The proposed numeri- cal scheme was implemented and numerical experiments showing the robustness of the scheme were carried out. 1
Numerical solution of equations describing the dynamics of flocking
Živčáková, Andrea ; Kučera, Václav (advisor) ; Janovský, Vladimír (referee)
This work is devoted to the numerical solution of equations describing the dynamics of flocks of birds. Specifically, we pay attention to the Euler equations for compressible flow with a right-hand side correction. This model is based on the work Fornasier et al. (2010). Due to the complexity of the model, we focus only on the one-dimensional case. For the numerical solution we use a semi-implicit discontinuous Galerkin method. Discretization of the right-hand side is chosen so that we preserve the structure of the semi-implicit scheme for the Euler equations presented in the work Feistauer, Kučera (2007). The proposed numerical scheme was implemented and numerical experiments showing the robustness of the scheme were carried out. Powered by TCPDF (www.tcpdf.org)
Exact and approximate Riemann solvers for the Euler equations
Živčáková, Andrea ; Kučera, Václav (advisor) ; Felcman, Jiří (referee)
In this work we deal with the solution and implementation of the problem of solving a partial differential equation with a piecewise constant initial condition, the so-called Riemann's problem. Specifically, we study the equations of conservation laws describing inviscid adiabatic flow of an ideal gas - the Euler equations. After some investigation, we show that these equations can be transformed to a quasilinear hyperbolic partial differential equation of first order. We are especially interested in the one-dimensional Euler equations for which we want to get an analytically exact Riemann's solver. The solution is found by investigation of properties of waves, namely rarefaction waves, shock waves and contact discontinuities were treated. The output of this work is a program in C for finding the exact Riemann's solver for one-dimensional Euler equations. The program is based on a theoretical analysis summarized in the first two chapters, and is tested on standard test data. The theory is based on the books [1] and [2].

Interested in being notified about new results for this query?
Subscribe to the RSS feed.